Abstract—This paper describes the method used to calculate the parameters of an electronic circuit equivalent model of a PEMFC stack. The model is based on that of Yu and Yuvarajan [1], but very little detail is given by them on how to calculate the component values of the circuit model based on experimental data of a fuel cell (FC) or FC stack. Here, a method will be established in which the performance data of small FC stacks can be used to simulate the behaviour of much larger stacks under the same operating conditions. It is crucial to be able to simulate a FC stack using an electronic circuit equivalent model when designing power converters for FCs, since the FC stack can then be simulated together with a power converter or any other electronic circuitry. First, a mathematical model of a small, two cell, proton exchange membrane FC (PEMFC) was calculated based on experimental data. This model was then adapted to describe the characteristics of a much larger, 100 W, FC stack. Finally, the mathematical model was used to calculate the needed parameters for an electronic circuit model by establishing a clear relationship between the two models.

Index Terms—Proton exchange membrane fuel cell (PEMFC), Fuel cell (FC) stack, electronic circuit equivalent model, boost converter.

I. INTRODUCTION

Over recent years, much emphasis has been placed on the development of FCs for the replacement of internal combustion engines (ICEs) in automobiles for both economic and environmental reasons. Although there are different types of FCs currently in development, the proton exchange membrane fuel cell (PEMFC) is the most likely candidate to replace ICEs because of its lightweight and low operating temperatures. A PEMFC is an electrochemical device that converts a fuel (hydrogen) and an oxidant (oxygen or air) into electricity. Unlike a battery, a FC can supply electrical energy for as long as it is being supplied with fuel. This, together with the fact that a FC contains no moving parts, results in much longer lifetimes of FCs compared to batteries and ICEs, resulting in long-term cost savings.

A number of technical and economic issues still prevent the widespread implementation of FCs in automobiles since the threat of global warming demands that hydrogen for cars be produced from sources that do not generate greenhouse gases. However, the use of FCs in stationary applications is much more plausible [2]. This is especially true for the use of FCs in backup power systems, even more so when the hydrogen needed to fuel these devices can be produced on-site from renewable sources.

The theoretical open-circuit output voltage of a PEMFC is 1.23 V. Due to losses in the various components of a FC, the open-circuit voltage is somewhat less, typically around 0.9 V. Furthermore, as the output current of a FC increases, its voltage drops in a non-linear fashion. The various losses in a FC, together with their influence on the cell’s output characteristics, will be discussed in the next section. If a FC stack is to be implemented in a system that would provide backup power for telecommunications equipment, for example, some form of power converter would be needed to increase the output voltage of a FC stack to a required level and that would be able to maintain a constant output voltage even under changes in load conditions.

In order to facilitate the design of a DC-DC boost converter to condition the output voltage of a FC stack, it is necessary to be able to simulate a FC stack as it operates in combination with such a converter. For this reason an electronic equivalent circuit model of a PEMFC stack has been developed [1]. Very little detail is available on the calculation of the parameters of the above mentioned model. Furthermore, Yu and Yuvarajan [1] only calculated the parameters of the model based on already existing performance data of a PEMFC stack and did not use the model to predict the characteristics of larger stacks.

This paper will discuss the method used to calculate the parameters of an electronic circuit equivalent model of a PEMFC stack. This was done by obtaining a mathematical model of a small, two-cell stack, based on experimental data. The mathematical model was then adapted to model...
the behaviour of a larger stack and verified by comparing
the model with experimental data of such a stack. Finally,
the model was adapted for an even larger, 100 W FC stack,
and then used to calculate the needed parameters for an
electronic circuit model by establishing a relationship
between the mathematical and electronic equivalent
circuit model.

II. V-I CHARACTERISTICS OF A FC STACK

As the current drawn from a FC stack increases, the
output voltage of the stack decreases due to various losses
present in the components of the stack. The voltage-current
curve of a typical FC is shown in Figure 1 and is also
referred to as a polarisation curve or a V-I curve.

A. Activation losses, fuel crossover and internal currents

Activation losses comprise the portion of the cell voltage
that is lost in providing activation energy for the chemical
reaction that transfers electrons between the electrodes.
This voltage drop has a very non-linear form and
contributes, in part, to the first region of the graph in
Figure 1. Activation losses, \(\Delta V_{act} \), can be described by the
equation [3]:

\[
\Delta V_{act} = A \ln \left(\frac{i + i_0}{i_0} \right) \ V
\]

In the above equation, \(i \) is the current density in mA.cm\(^{-2} \)
and \(i_0 \) is the current density at which the voltage drop
begins to move away from zero. For example, if \(i_0 \) is 100
mA.cm\(^{-2} \) there will be no voltage drop until the current
density \(i \) is greater than 100 mA.cm\(^{-2} \). In Eq. (1), \(A \) is a constant which value depends on the electrode material
as well as the type of reaction taking place. Another cause of
voltage drop in a FC is from fuel crossover and internal
currents. Although the electrolyte membrane in a FC is
designed to be impermeable to gas flow and to be only
proton conductive, it is still possible for a small amount of
the reactants (H\(_2\) and air) to permeate through the
membrane from one side of the cell to the other. This,
together with a small amount of electron flow through the
membrane, causes a voltage drop in the open circuit voltage
of low-temperature FCs. If a total internal current density \(i_n \)
is caused to flow through the cell by fuel crossover and
internal currents, this voltage drop can be combined with
the activation losses given in the first part of Eq. (1). Since
the crossover current is usually very small and only useful
in explaining the initial drop in FC voltage, it can be
omitted [3].

B. Ohmic losses

The second region of a FC polarisation curve is fairly
linear and is caused by the electrical resistance of the
electrodes as well as the resistance to proton flow through
the membrane. This voltage drop is proportional to the
current density \(i \) and can be modeled by:

\[
\Delta V_{ohm} = i \ V
\]

where \(r \) is an area specific resistance in terms of kΩ.cm\(^{-2} \).

C. Mass transport or concentration losses

The final cause of voltage drop in a FC is shown in
region 3 of Figure 1. This loss is referred to mass
transportation loss or concentration losses. When the
oxygen needed by the cell is supplied in the form of air,
there will be a reduction of the concentration of oxygen
in the air around the electrodes as the oxygen is used by the
cell. On the anode side, where hydrogen is used, there will
also be a reduction of hydrogen pressure as more hydrogen
is consumed as a result of higher currents being drawn from
the cell. The concentration loss, \(\Delta V_{trans} \), is given by:

\[
\Delta V_{trans} = m e^{n_i} \ V
\]

where \(m \) and \(n \) are constants in terms of V and cm\(^2\).mA\(^{-1} \)
respectively.

D. Complete mathematical model for a FC stack

Equations (1)-(3) can be combined and subtracted from the theoretical open circuit voltage E ($E = 1.23$ V), to give the actual FC output voltage over its entire current range:

$$ V = E + A \ln(i_s) - ir - Aln(i) - me^n \text{ V} $$(4)

The first two terms in the above equation are constant, regardless of the cell current, and can be replaced by a practical open circuit voltage, E_{OC}:

$$ V = E_{OC} - ir - A \ln(i) - me^n \text{ V} $$(5)

In the case of a FC stack, comprised of N_C identical cells, Eq. (5) can be rewritten as [4]:

$$ V_{STACK} = N_C E_{OC} - N_C i r - N_C A \ln(i) - N_C m e^n \text{ V} $$(6)

The constants in the above equation (r, A, m and n) were determined from the analysis of experimental data from small FC stacks of only two cells. The value of N_C was then adjusted to predict the behaviour of a larger, 100 W, FC stack. The resulting equation was then used to design an equivalent electronic circuit model of a 100 W FC stack to enable the simulation of the stack together with other electronic circuitry.

In order to verify the model in Eq. (6), a small two-cell stack was constructed and used to obtain an experimental polarisation curve [5]. A typical value of n was chosen as $0.008 \text{ cm}^2 \cdot \text{mA}^{-1}$.

The above equations can be written in matrix form:

$$ Ax = b $$

(7)

To solve for the solution matrix, x, Eq. (7) can be rewritten in the form

$$ x = A^{-1}b $$

(8)

The above equation was solved using MATLAB, and the following values were found:

$$ r = 0.0006 \text{ kQ.cm}^2 $$

$$ A = 0.0351 \text{ V} $$

$$ m = 0.0147 \text{ V} $$

Based on the above values, the mathematical model of any N_C–cell stack under the same operating conditions would

<table>
<thead>
<tr>
<th>Stack voltage (V)</th>
<th>Current (A)</th>
<th>Current (mA.cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.82</td>
<td>0.1</td>
<td>4</td>
</tr>
<tr>
<td>1.76</td>
<td>0.2</td>
<td>8</td>
</tr>
<tr>
<td>1.75</td>
<td>0.3</td>
<td>12</td>
</tr>
<tr>
<td>1.73</td>
<td>0.4</td>
<td>16</td>
</tr>
<tr>
<td>1.72</td>
<td>0.5</td>
<td>20</td>
</tr>
<tr>
<td>1.70</td>
<td>0.6</td>
<td>24</td>
</tr>
<tr>
<td>1.69</td>
<td>0.7</td>
<td>28</td>
</tr>
<tr>
<td>1.68</td>
<td>0.8</td>
<td>32</td>
</tr>
<tr>
<td>1.67</td>
<td>0.9</td>
<td>36</td>
</tr>
<tr>
<td>1.65</td>
<td>1.0</td>
<td>40</td>
</tr>
<tr>
<td>1.61</td>
<td>1.5</td>
<td>60</td>
</tr>
<tr>
<td>1.57</td>
<td>2.0</td>
<td>80</td>
</tr>
<tr>
<td>1.53</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>1.50</td>
<td>3.0</td>
<td>120</td>
</tr>
<tr>
<td>1.46</td>
<td>3.5</td>
<td>140</td>
</tr>
<tr>
<td>1.42</td>
<td>4.0</td>
<td>160</td>
</tr>
</tbody>
</table>

From the data in Table 1, it can be seen that the open circuit voltage of the two cell stack, N_E_{OC} is equal to 1.97 V. This means that the open circuit voltage of a single cell would be 0.985 V. By substituting values from Table 1 into Eq. (6), the values of r, A and m were calculated. This was done by forming six equations from the data in Table 1:

$8r + 2,7726A + 2,0650m = 0.15$
$24r + 4,9698A + 2,2015m = 0.22$
$160r + 8,7641A + 3,7930m = 0.40$
$320r + 10,1503A + 7,1933m = 0.55$
$560r + 11,2696A + 18,7867m = 0.88$
$640r + 11,5366A + 25,8716m = 0.96$

The above equations can be written in matrix form:

$$ Ax = b, \text{ where}$$

$$ A = \begin{bmatrix} 8 & 2,7726 & 2,0650 \\ 24 & 4,9698 & 2,2015 \\ 160 & 8,7641 & 3,7930 \\ 320 & 10,1503 & 7,1933 \\ 560 & 11,2696 & 18,7867 \\ 640 & 11,5366 & 25,8716 \end{bmatrix} \text{ and } b = \begin{bmatrix} 0.15 \\ 0.22 \\ 0.40 \\ 0.55 \\ 0.88 \\ 0.96 \end{bmatrix} $$

$$ A = \begin{bmatrix} 8 & 2,7726 & 2,0650 \\ 24 & 4,9698 & 2,2015 \\ 160 & 8,7641 & 3,7930 \\ 320 & 10,1503 & 7,1933 \\ 560 & 11,2696 & 18,7867 \\ 640 & 11,5366 & 25,8716 \end{bmatrix} $$

$$ A = \begin{bmatrix} 8 & 2,7726 & 2,0650 \\ 24 & 4,9698 & 2,2015 \\ 160 & 8,7641 & 3,7930 \\ 320 & 10,1503 & 7,1933 \\ 560 & 11,2696 & 18,7867 \\ 640 & 11,5366 & 25,8716 \end{bmatrix} $$

$X_1 = \begin{bmatrix} 8 & 2,7726 & 2,0650 \\ 24 & 4,9698 & 2,2015 \\ 160 & 8,7641 & 3,7930 \\ 320 & 10,1503 & 7,1933 \\ 560 & 11,2696 & 18,7867 \\ 640 & 11,5366 & 25,8716 \end{bmatrix} $$

$X_2 = \begin{bmatrix} 0.15 \\ 0.22 \\ 0.40 \\ 0.55 \\ 0.88 \\ 0.96 \end{bmatrix} $
be:

$$V_{\text{STACK}} = N_C (0.986) - N_C (0.0003)i - N_C (0.0351) \ln (i) - N_C (0.0147)e^{0.008i}$$

(9)

Note that Eq. (9) only holds true when i is given in terms of current density (mA.cm$^{-2}$). The equation was converted to express i in terms of Amperes (A) so that it can be used to determine the parameters of an electronic equivalent circuit model:

$$V_{\text{STACK}} = N_C (0.986) - N_C (0.012)I_o - N_C (0.0351) \ln (I_o) - N_C (0.0147)e^{0.32I_o} - N_C (0.13)$$

(10)

where I_o is the stack current in terms of Amperes (A). Also note that a second constant term is introduced in Eq. (10) because of the nature of the natural logarithm term in Eq. (9). The next section will discuss the development of the electronic circuit equivalent model of a FC stack as proposed by Yu and Yuvarajan [2] that allows a FC stack containing any number of cells to be simulated using an electronic simulation package.

III. ELECTRONIC EQUIVALENT CIRCUIT MODEL

In the previous section, the mathematical model of a FC stack consisting of N_C cells was discussed. As stated earlier, an electronic circuit equivalent model was proposed by Yu and Yuvarajan [1]. However, no details were given on a method of calculating the values of the components in the equivalent circuit model based on a mathematical equation obtained from experimental data.

The electronic circuit model of a PEMFC stack is shown in Figure 2. The model is based on the non-linearity of a diode and the current control feature of bipolar junction transistors (BJTs). The diode is used to model the ohmic losses and activation losses, while the two BJTs (Q1 and Q2) are used to model concentration losses. The capacitor C and inductor L are used to measure the dynamic behaviour of the stack. Typical values of 1F and 10 mH were chosen for these two components respectively.

The relationship between the voltage across a diode (V_D) and the current through it (I_D) is given by the equation

$$V_D = nV_T \ln \left(\frac{I_D}{I_{sp}} \right), \text{where } V_T = \frac{kT}{q}$$

(11)

where n is the emission coefficient, I_{sp} is the saturation current and V_T is the thermal voltage in terms of the Boltzmann’s constant (k), absolute temperature (T) and electronic charge, q. This equation exactly resembles Eq. (1) for the activation losses in a FC [1].

The transistors, Q1 and Q2, together with R1 and R2 form a current limiting circuit used to model the concentration losses of the FC stack. R2 acts a current sensing resistor so that when the current through it exceeds a certain limit, Q2 will start conducting, reducing the base voltage of Q1. This will cause the emitter voltage of Q1 to decrease at an exponential rate. The two transistors are assumed to be identical with current gain β and base-emitter voltage V_{BE}. The variation of the output voltage (V_o) as a function of load current (I_o) can be determined using the circuit in Figure 3.

The base current of Q1 (I_{B1}) and the collector current of Q2 (I_{C2}) can be written as

$$I_{B1} = \frac{I_o - I_{C2}}{1 + \beta}$$

(12)

$$I_{C2} = I_s e^{\frac{V_T}{V_r}}$$

(13)

where I_s is the saturation current of Q1 and Q2 and V_T is the thermal voltage as given by Eq. (11).

The output voltage can then be written as

$$V_o = V_S - R_1(I_{B1} + I_{C2}) - V_{BE1} - R_2(I_o - I_{C2} - I_{B2})$$

(14)

By substituting Eq. (12) and (13) into Eq. (14) and assuming that β is large, the output voltage can be simplified to
Combining Eqs. (11) and (15), as well as taking the ohmic resistance of the diode (R_D) into account, the total FC stack output voltage can be written as

\[V_o = V_s - R_2 I_o - R_1 I_s \frac{R_2 I_o}{V_T} - V_{BE} \]

(15)

It can be seen that Eq. (16) has the same form as the mathematical model of a FC stack given in Eq. (10). By comparing these two equations, the following values must be calculated in order to finalize the circuit model of a FC (the thermal voltage V_T is 25 mV at room temperature):

- \(V_S \) (Voltage of the battery).
- R1 and R2.
- The emission coefficient of the diode, \(n \).
- Saturation current of the diode, \(I_{SD} \).
- Saturation current of Q1 and Q2, \(I_S \).
- Ohmic resistance of the diode, \(R_D \).

For a two cell stack \((N_C = 2)\), the above values can be determined by comparing Eq. (16) with Eq. (10) and establishing the following relationships:

- \(V_s + n V_T \ln(I_{SD}) = 1.972 \), where \(V_S \) is the theoretical output voltage of 2.46 V.
- \((R_2 + R_D) = 0.024 \)
- \(nV_T = 0.07 \)
- \(R1 I_s = 0.0294 \)
- \(R_2 \frac{I_s}{V_T} = 0.32 \)

A value for R1 was chosen as 10 \(\Omega \). The values for Eq. (16) were then calculated to be:

- \(R_2 = 0.008 \Omega \)
- \(I_s = 0.00294 \) A
- \(n = 2.8 \approx 3 \)
- \(R_D = 0.016 \Omega \)
- \(I_{SD} = 0.000938 \) A

IV. SIMULATION RESULTS

The graph in Figure 4 shows the polarisation curves of a two cell FC stack obtained from experimental data (Table 1), the mathematical model (Eq. (10)) as well as the results of simulating the proposed electronic circuit equivalent using the Proteus VSM simulation package.

![Figure 4 Simulated, calculated and measured polarisation curves of a two cell PEMFC stack](image)

It can be seen from the above graph that the three results closely match each other, proving that the two models can be used to accurately describe the behaviour of a FC stack. In order to further test the models, Eq. (10) was used to calculate the performance of a four cell stack. The resulting equation was then used the determine the parameters of the equivalent circuit model for such a stack. The simulation results, together with those obtained from calculating Eq. (10), were compared to the actual performance data obtained from a four cell stack constructed in the laboratory. These graphs (Figure 5) show that the model can be used to predict the behaviour of larger FC stacks based on the performance data of smaller ones.

![Figure 5 Simulated, calculated and measured polarisation curves of a four cell PEMFC stack](image)

V. CONCLUSION

The various losses present in a FC were discussed in terms of mathematical equations which were then used to mathematically model the behaviour of a FC stack. An
already existing electronic circuit equivalent model of a FC stack was defined and the mathematical model of the FC used in order to make the circuit equivalent model more adaptable and easier to use for a wide variety of applications. It could be seen that the data collected from testing a small FC stack could be used to model and simulate the behaviour of larger stacks.

ACKNOWLEDGMENT
Telkom SA Ltd., M-TEC and TFMC have graciously provided funding for this project.

REFERENCES