
 

  

Abstract — The software underlying RAID 
Controllers is generally implementation specific, with no 
formal method for verification of correctness or optimal 
operation. We present work that formalises the 
specification of RAID protection schemes. From this 
formal specification, it should then be possible to 
automatically generate the logic for the corresponding 
RAID Controller, and analyse this for correctness and 
efficiency. The work is being tested within the 
framework provided by ROSTI (RAID Operations 
Simulator for Testing Implementations), a simulator we 
have developed that assesses the performance 
implications of various RAID architectures. Finally, we 
present possibilities for extending this scheme to 
automated recovery from errors during operation.  
 

Index Terms — RAID, Correctness, Validation, 
Specification 
 

I. INTRODUCTION 
HE applications for RAID  (Redundant Array of 
Independent Disks) [1],[2] in ESS (Enterprise Storage 

Systems) continue to grow as applications demand ever 
more secondary storage. To meet this demand, new 
protection schemes are being used in commercial systems, 
such as RAID 6 [4]. These schemes increase the number of 
disk failures that are tolerable before data loss occurs. In 
organisations with large arrays of disks, this is of particular 
importance, since the Mean Time To Failure (MTTF) of the 
array decreases as the number of disks increase. The 
increased number of disks across which data can be 
distributed can also improve data transfer rates for certain 
types of I/O operations, as well as allowing multiple 
operations to occur in parallel.  

The benefits offered by these new schemes are offset by a 
number of factors: write operations take longer, since more 
protection information must be updated on each operation; 
certain schemes reduce the level of parallelism possible; a 
greater proportion of the available storage space is used to 
store protection information; rebuilding lost data after a disk 
failure is a longer and more complicated procedure; and the 
complexity of the associated controller increases, which 
introduces a greater possibility for errors in operation. 

Our work primarily focuses on the performance 

 
 
 

implications of these schemes, with specific interest in the 
response time and throughput of the system. To this end, we 
have developed ROSTI (RAID Operations Simulator for 
Testing Implementations). During the implementation of 
ROSTI, it became apparent that a generalisation of the 
operation of a RAID Controller would be useful for 
comparing various such schemes.  

To achieve this, we are attempting to construct a formal 
description of RAID protection schemes, independent of the 
implementation. This would allow the required individual 
operations for a given request to be derived from this 
description, whilst ensuring that such operations are optimal 
in terms of disks accessed and maximising parallelism in the 
array. Finally, this approach lends itself to integration with 
the work of Courtright [3], which describes a means of 
ensuring that array operations are executed correctly, even 
during disk failures. 

II. ROSTI 
ROSTI is a simulator we have built using OMNET++ [4], 

an open-source event-driven simulation framework. It works 
with a small set of module types, such as workload 
generators, storage devices, and RAID controllers. The 
communication protocol between each type of module is 
pre-defined. This allows for complicated storage 
architectures to be created from a set of building blocks, 
rather than by modifying code. This greatly simplifies the 
process of testing multiple configurations of interest. This 
also allows for simple extensions by creating custom 
modules that conform to the communication protocol. 

The formalisation presented in the rest of this paper was 
inspired by the work done in implementing RAID Controller 
modules for ROSTI. We noticed that much of the code for a 
given operation (read or write) was repeated across code 
schemes, and could be easily generalised. It was discovered 
that the position of data on disk, rather than the scheme 
being utilised, accounted for the most significant differences 
in control logic. Finally, over several iterations of 
improvements to the Controller modules, it was discovered 
that several cases exhibited either incorrect or suboptimal 
behaviour as a result of coding errors. The work presented 
here is an attempt to prevent these sorts of errors by 
automating the process by which operations are processed, 
according to a well defined algorithm. 

III. RAID TERMINOLOGY 
Data in a RAID Array is distributed across several disks 

Automation of RAID Controller Operations using ROSTI 
(Work in Progress) 

Sameshan Perumal and P. S. Kritzinger 
DNA Research Group 

Department of Computer Science 
University of Cape Town 

Email: sperumal@cs.uct.ac.za 

T 



 

in Stripes. Each Stripe consists of blocks referred to as 
Strips, which are distributed across available disks. 
Internally, each Strip is further subdivided into Chunks, 
which are the smallest unit of data we deal with. Within a 
Stripe, we refer to a group of Chunks at the same position in 
each Strip as a row. These concepts are illustrated in Figure 
1. 

Q

Q

2

2

P

P 0

0

1

1

C1

C2

C3

C0

1

2

2 P Q

P Q 1

P

P

P

P

0

0

0

0

1

1

0

0

2

2

2

2

Q

Q

1

Q

Q

1

Stripe

Chunk

Strip

Array

 
Figure 1 : Terminology used in reference to RAID 
systems 

IV. FORMALISING CONTROLLER OPERATION 

A. RAID LAYOUT SPECIFICATION 
The layout of a RAID Array refers to the number and 

arrangement of Stripes, Strips and Chunks in the array. In 
Figure 1, the layout is for the RAID6 scheme. In general, 
this amounts to defining the type of each chunk as being 
either data (the chunk contains user data) or parity (data 
protection information). One approach is to hard code an 
algorithm based on the scheme in use. 

Our approach is to differentiate between three types of 
parity: 

•  Horizontal: All parity chunks lie in a single row 
for each stripe. 

•  Vertical: All parity chunks lie in a single strip, 
for each stripe (eg. RAID 4). 

•  Diagonal: The position of parity chunks lie 
within a single strip, but the location of this strip 
rotates in a round-robin fashion (eg. RAID 6, see 
parity chunks P and Q in [5]). 

Using these parity types, it is possible to specify a number 
of types of parities to apply to a layout, together with an 
order in which to apply them. This automatically produces 
the correct layouts for any combination of Stripe, Strip and 
Chunk size settings. A proof of concept of this technique has 
been implemented, and was tested with combinations of all 3 
types of parity. In all cases, the layout produced was correct. 

B. SPECIFYING PROTECTION GROUPS 
The usefulness of the above formalism becomes more 

apparent when we consider that a given type of parity 
protects data chunks in consistent manner. Specifically, a 
Horizontal parity chunks protects all data chunks in its Strip, 
while Vertical and Diagonal parity chunks protect all data 
chunks in their Row. This web of protection can easily be 
represented using a dependency graph, linking data chunks 
to the parity chunks that protect them. This graph can be 
built as the above layout process occurs, based on a simple 
set of rules. The use of a dependency graph also allows for 
more complicated dependency mappings, but using the same 
three parity types. Thus, we could conceive of a Horizontal 

parity that protects all data chunks that lie in the same 
diagonal.  

C. DERIVING ARRAY OPERATIONS 
The dependency graph created above can now be used to 

automate the operation of the RAID Controller. Specifically, 
if data needs to be reconstructed for a read operation due to 
a failed disk, the dependency graph can be used to determine 
the list of all parity chunks protecting the data chunks in 
question. Using this information, it is possible to determine 
the minimum number of disk accesses required to read in 
appropriate parity and recover the data, thus addressing the 
optimality issue raised earlier. 

For a write, parity chunks need to be updated to reflect 
changes in data. Using the dependency graph, we can ensure 
that all parity chunks related to changed data chunks are 
correctly updated. We can even minimise the number of disk 
I/O’s issued for certain operations (eg. Large Stripe Write). 

Since the operations are extracted from the dependency 
graph, rather than coded by hand, it is possible to guarantee 
that operations are executed correctly and efficiently, under 
the assumption that the dependency graph is correctly 
constructed. Additionally, a trace of the operation of a 
controller using this scheme can be used to verify whether 
another, hand-coded controller is operating correctly. 

V. CORRECTNESS OF OPERATION 
Although a RAID Controller may operate correctly during 
normal operation, it may still not handle error scenarios 
correctly. The most critical time during which errors can 
occur is if a disk failure happens while an I/O Request is 
being processed. The array may be left in an inconsistent 
state, and hand-coding of recovery schemes for all possible 
cases is a time-consuming and error-prone task. The work of 
[3] presents a formal method to prevent this, using Directed 
Acyclic Graphs (DAGs). It is our intention to use the 
dependency graph described above to automatically generate 
these DAG’s, where possible, thus creating an end-to-end 
formalism governing the operation of the RAID Controller. 

REFERENCES 
[1] David A. Patterson, Garth Gibson and Randy H. Katz, 

“A Case for Redundant Arrays of Inexpensive Disks 
(RAID)”, in Proc. ACM SIGMOD International 
Conference on Management of data, 1988. 

[2] Sameshan Perumal and Pieter , “A Tutorial on RAID 
Storage Systems”, Tech. Report CS04-05-00, Dept. of 
Computer Science, University of Cape Town, 2004. 

[3] William V. Courtright II, “A Transactional Approach to 
Redundant Disk Array Implementation,” Ph.D. 
dissertation, Carnegie Mellon Univ., 1997. 

[4] András Varga, “The OMNeT++ Discrete Event 
Simulation System”, in Proc. European Simulation 
Multiconference, 2001. 

[5] P. M. Chen, et. al., “RAID: high-performance, reliable 
secondary storage,” ACM Computing Surveys, vol. 26, 
issue 2, pp. 145–185, June 1994. 


